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This is a study on the tangential flow and advective mixing of viscoplastic fluids (Bing-
ham plastics) between two eccentric, alternately rotating cylinders. Two geometrical
configurations and various rotation modes are considered for a relatively large range
of the yield stress. The hp-type finite element method with the mixed formulation
is used to solve for the steady velocity and pressure fields. The bi-viscosity and the
Papanastasiou models agree quantitatively with each other in predicting the velocity
fields and the practically unyielded zones. However, the Papanastasiou model is more
robust and economic than the bi-viscosity model in the computation using Newton
iteration. In the steady flows, in addition to the motionless zones, we have discov-
ered some plugs with rigid rotation, including rotating plugs stuck onto the outer
cylinder and rotating, even counter-rotating, plugs disconnected from both cylinders.
The unsteady, periodic flow is composed of a sequence of the steady flows, which
is valid in the creeping flow regime. The characteristics of advective mixing in these
flows have been studied by analysing the asymptotic coverages of a passive tracer,
the distributions of the lineal stretching in the flow and the variations of the mean
stretching of the flow with time. The tracer coverage is intuitive but qualitative and,
occasionally, it depends on the initial location of the tracer. On the other hand, the
distribution of stretching is quantitative and more reliable in reflecting the mixing
characteristics. Interestingly, the zones of the lowest stretching in the distribution
graphs are remarkably well matched with the regular zones in the tracer-coverage
graphs. Furthermore, the mixing efficiency proposed by Ottino (1989) is used to
characterize the advective mixing in the two geometrical configurations with various
rotation modes. It is important to realize that, for plastic fluids, a major barrier to
effective mixing is the unyielded fluid plugs which are controlled by the yield stress
and geometrical configurations. Therefore, when designing an eccentric helical annu-
lar mixer it is important to pay attention first to the geometric issues then to the
operating issues.

1. Introduction
Many fluids of engineering interest appear to exhibit yield behaviour, where flow

occurs only when the imposed stress exceeds a critical yield stress level. Such materials,
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often called Bingham plastic fluids, are frequently encountered in industrial problems;
they include greases, paints, slurries, pastes, suspensions and foodstuff such as dough,
cheese and mayonnaise. It is thus not surprising to find that mixing of yield-stress
fluids is common in practice. A summary of the rheology of viscoplastic materials was
given by Bird, Dai & Yarusso (1983). More recently, a thorough review of the concept
of yield stress was given by Barnes (1999). Briefly, if one is interested in and is capable
of measuring extremely small shear rates, then the yield stress does not exist as a
physical property, i.e. ‘παντα ρει’ – everything flows; otherwise the concept of a yield
stress has proved very useful in a whole range of applications once the yield stress
is defined as a mathematical curve-fitting constant, used along with other parameters
to produce an equation to describe the flow curve of a material over a limited
range of shear rates. Since there can be strong coupling between the mixing flow
and the material being mixed, it is apparent that new technological developments will
necessitate a deep understanding of the chaotic mixing of fluids with complex rheology.

There are a few model mixers amenable to detailed investigations both by experi-
mentation and computation (Ottino 1989; Kusch & Ottino 1992); one of them is the
eccentric helical annular mixer (EHAM) in which a pressure-driven axial Poiseuille
flow between two eccentric cylinders is perturbed by rotating the cylinders periodi-
cally in time. This mixer has a continuous input–output and, with no sharp edges, it
can be designed to have mild-shear-rate histories to avoid breakage and degradation
of macromolecules. The two-dimensional, chaotic mixing of viscous fluids between
eccentric cylinders has been extensively analysed in the Stokes regime (Chaiken et
al. 1987; Aref & Balachandar 1986; Swanson & Ottino 1990; Muzzio, Swanson &
Ottino 1991); an excellent agreement between the experimentally observed and the
theoretically predicted mixing patterns has been demonstrated by Swanson & Ot-
tino (1990). The investigation was later extended to an experimental study on the
EHAM flow, i.e. to including the axial flow, by Kusch & Ottino (1992). Their results
show that although the axial flow does have an influence on the mixing structures
created in the EHAM, the major feature of the streakline coverages appears to be
controlled by the modulation of the cylinder rotations. Regarding the rheological
effects, the experimental and computational investigations of Niederkorn & Ottino
(1993, 1994) addressed the fluid elasticity and shear-thinning viscosity. The study of
Souvaliotis, Jana & Ottino (1995) suggests that the accuracy requirement for the
velocity field is not as stringent as the exponential stretching of chaotic mixing seems
to suggest. More recently, our numerical investigation (see Fan, Tanner & Phan-
Thien 2000) found that the fluid elasticity has relatively little effect on the kinematics
and advective mixing in an eccentric annulus; on the other hand, the shear-thinning
property has a large impact on both the kinematics and the mixing characteristics.
Furthermore, the results of our fully unsteady computation indicate that the transient
response of the viscoelastic fluid, caused by switching the cylinder rotations and the
stress relaxation, can be neglected if only the final mixing results are of interest; thus
the piecewise-steady assumption has been justified.

The present study considers the advective mixing of plastic fluids in the two-
dimensional, time-periodic flows between eccentric cylinders and has two main moti-
vations:

First, we seek to model the tangential plastic flow in a complex geometry, which is
of wide application yet has received little attention in the literature. There have been
a few investigations on the axial flow of Bingham plastics in eccentric annuli (Walton
& Bittleston 1991; Beverly & Tanner 1992); through their work the flow pattern with
a true plug was established.
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Configuration-1 : µ = 2.0, ε = 0.45 Configuration-2 : µ = 0.5, ε = 0.6

Figure 1. Geometrical configurations considered and the corresponding finite element meshes.

Second, since the flow patterns for plastic materials are expected to be significantly
different from their counterparts for Newtonian fluids, we intend to examine the
corresponding characteristics and efficiency of advective mixing in the time-periodic
flow between eccentric cylinders.

We use two viscoplastic models, the bi-viscosity and Papanastasiou’s, in the hp-type
finite element method to solve for the steady velocity and pressure fields corresponding
to each cylinder’s rotation. Unyielded fluid is then detected by using the criteria
implied by the models. Neglecting the fluid inertia, the unsteady flow is composed
of a sequence of the steady flows. The tools used to evaluate the advective mixing
include the asymptotic coverage of a passive tracer, the stretching distribution of
fluid elements, the mean stretching of the flow and the mixing efficiency proposed by
Ottino (1989). The present work considers two geometrical configurations, and spans
a relatively large range of the yield stress and the modulation of cylinder rotation.

2. Problem definitions
The flow domain is confined between two eccentric cylinders with parallel axes

displaced by a distance e. The radii of the inner and outer cylinders are Ri and Ro,
respectively. The geometrical configuration is completely specified by a dimensionless
gap µ and a dimensionless eccentricity ε which are defined as

µ =
Ro − Ri
Ri

, (2.1)

ε =
e

Ro − Ri . (2.2)

Figure 1 shows the two configurations considered and the corresponding finite element
meshes used in the present study. Configuration 1 with µ = 2.0 and ε = 0.45 is the
same as used in the investigations of Swanson & Ottino (1990) for Newtonian fluids,
and Niederkorn & Ottino (1993, 1994), and Fan et al. (2000) for viscoelastic and
shear-thinning fluids. Configuration 2, with a smaller gap and a larger eccentricity,
µ = 0.6 and ε = 0.6, was chosen because of its potential capacity for significantly
reducing the unyielded zones in this tangential annular flow.

Chaotic advection in eccentric annuli can be achieved by alternately rotating the
inner and outer cylinders with angular velocities Ωi and Ωo, respectively. As long
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as the creeping flow assumption is valid, the actual magnitude of the cylinder’s
rotation velocities is unimportant, only their displacements affect the fluid advection,
as indicated by Swanson & Ottino (1990). As in the previous investigations, a square-
wave form of the modulation is adopted, that is, at any time only one cylinder is
allowed to rotate with a constant angular velocity and the change from one rotating
to the other is instantaneous. In order to keep the investigation reasonably focused,
we restrict ourselves to the case of counter-rotation, and that, in a period T , the total
linear displacement of the inner cylinder is equal to that of the outer cylinder. Thus
the modulation or the rotation mode can be characterized by the angular displacement
of the outer cylinder per period:

θ =

∫ T

0

Ωodt. (2.3)

3. Models for Bingham viscoplastic fluids
The Bingham model is one of the simplest that describes fluids with yield stresses.

In a simple shear flow, it is characterized by a flow curve (the shear stress versus the
steady shear rate) which is a straight line having an intercept τy on the shear-stress
axis, and it is this yield stress that must be exceeded before flow commences, the shear
rate then being proportional to the excess of the stress over the yield stress. Within
the unyielded region, the material flows as a rigid body while in the yielded region the
material behaves as a Newtonian fluid under the influence of a shear stress equivalent
to τ− τy . The general form of the Bingham model suitable for three-dimensional flows
is

τ = (η + τy/γ̇)γ̇, τ > τy

γ̇ = 0, τ < τy

}
(3.1)

where η is the intrinsic viscosity of the yielded fluid, γ̇ = ∇u+ (∇u)T is the strain rate
tensor, u the velocity, and γ̇ =

√
γ̇ : γ̇/2 is the generalized strain rate (second invariant

of the strain tensor), τ is the deviatoric part of the total stress tensor σ = −pI + τ ,
where p is the isotropic pressure and I the unit tensor, and τ =

√
τ : τ/2 is the second

invariant of τ . As mentioned in the introduction, the Bingham model is an idealization
of real plastic fluids. Although this constitutive relation is amenable to analytical
solutions for some rectilinear flows (see Bird et al. 1983), it poses significant problems
in the numerical simulation of complex geometries: when the strain rate approaches
zero, the apparent viscosity is unbounded, and the stress becomes indeterminate in the
unyielded region. To tackle this singular behaviour, some researchers prefer adding a
small number to the denominator in equation (3.1) (e.g. Bercovier & Engelman 1980;
Walton & Bittleston 1991); a more popular approach, however, is to introduce the
bi-viscosity approximation:

τ = (η + τy/γ̇)γ̇, τ > τy

τ = ηr γ̇, τ < τy

}
(3.2)

where ηr is a relatively large reference viscosity compared to η. The flow curve of
this model can approximate the Bingham model down to a very small shear rate if
sufficiently large ηr is chosen. The Newtonian behaviour of this model at small strain
rates facilitates theoretical analyses of viscoplastic flows (e.g. Lipscomb & Denn 1984;
Gartling & Phan-Thien 1984) and its usefulness in the numerical simulation has been
confirmed by several investigations (Beverly & Tanner 1989, 1992; Nieckele, Naccache
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Figure 2. Flow curves of the Papanastasiou and bi-viscosity models.

& Mendes 1998). Another modified constitutive equation for Bingham plastics was
introduced by Papanastasiou (1987):

τ =

(
η +

τ y(1− exp(−nγ̇))
γ̇

)
γ̇. (3.3)

Unlike the bi-viscosity model, here a single constitutive equation holds in both the
yielded and unyielded regions. With a relatively large exponent n, a quick growth of
the stress can be achieved at relatively very low strain rates, which is consistent with
the behaviour of the material in its practically unyielded state. In the limiting case of
n → ∞, Papanastasiou’s model reduces to the Bingham model in the yielded region.
In the unyielded region,

lim
γ̇→0

τ = (η + nτy)γ̇, (3.4)

thus the singular behaviour in the Bingham model is eliminated. Successful applica-
tions of Papanastasiou’s model to the extrusion flow and to the entry and exit flows
were reported by Papanastasiou (1987), Ellwood et al. (1990), and Abdali, Mitsoulis
& Markatos (1992).

The radius and angular velocity of the inner cylinder, Ri and Ωi, and the intrinsic
viscosity η are taken as the scaling parameters. The dimensionless yield stress is
defined as

Y =
τy

ηΩi
. (3.5)

The stress, strain rate and the parameter n in Papanastasiou’s model are non-
dimensionized correspondingly; the dimensionless reference viscosity in the bi-
viscosity model is

m =
ηr

η
. (3.6)

Figure 2 shows the flow curves predicted by the bi-viscosity and Papanastasiou’s
models. By taking the second invariants on both sides of equation (3.3), we can define
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Y n γ̇c

1 100 0.03386
1 1000 0.00525
1 10000 0.00072

10 100 0.05250
10 1000 0.00723
10 10000 0.00092

Table 1. The critical strain rate predicted by the Papanastasiou model for some values of the yield
stress and the parameter n.

the yield condition as τ = τy and get a equation for the critical strain rate γ̇c,

γ̇c = Y exp(−nγ̇c). (3.7)

Table 1 gives some typical values for γ̇c, which indicate that the critical strain rate is
not very sensitive to the values of the yield stress in the Papanastasiou model.

4. Finite element method
For the eccentric annulus geometry, the bipolar coordinate system is commonly

preferred because of its advantage of fitting the boundaries with the coordinate lines.
The transformation from the rectangular coordinates (x, y) to the bipolar coordinate
system (ξ, φ) is defined as

x =
a sinh ξ

cosh ξ + cosφ
, y =

a sin ξ

cosh ξ + cosφ
, (4.1)

where a is a geometric parameter based on the eccentricity and the radii,

a =
1

2e

√(
R2
i + R2

o − e2
)2 − 4R2

i R
2
o . (4.2)

In figure 1 the finite element meshes are uniform in the bipolar coordinate system.
The continuity and momentum equations for isothermal, creeping, steady flows of

incompressible fluids are
∇ · u = 0, (4.3)

−∇p+ ∇ · τ =0. (4.4)

We adopt a straightforward adaptation of the mixed finite element method for
the incompressible Newtonian flows, i.e. the velocity–pressure formulation. Let Ω be
the flow domain and ∂Ω its boundary. On ∂Ω, the partial boundaries ∂Ωu, ∂ΩN
are identified with boundary conditions for the velocity u and the traction force t,
respectively. The variational formulation for the viscoplastic fluids can be stated as:

Find the set (u, p) ∈ V×P such that, ∀Φu ∈ V, ∀Φp ∈ P,∫
Ω

(ηa(u)(∇u+ (∇u)T ) :∇Φu − p∇ ·Φu) dΩ =

∫
∂ΩN

t ·Φu d∂Ω, (4.5)

∫
Ω

(∇ · u)Φp dΩ = 0, (4.6)

whereV,P denote the function spaces defined on Ω and spanned by the basis functions
Φu,Φp, for the velocity and pressure, respectively.
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Figure 3. Contours of the second invariant of the extra stress τ in configuration 1; the outer
cylinder is rotating, Y = 1.0 and m = 1000, n = 1000 for (a, b) the Papanastasiou, and (c, d) the
bi-viscosity models.

In equation (4.5), the apparent viscosity function ηa(γ̇) is simply substituted by the
bi-viscosity or the Papanastasiou viscosity through the constitutive relation:

τ = ηa(γ̇)γ̇. (4.7)

For the basis functions of the finite element spaces, we adopted a set of hierarchic
shape functions proposed by Szabo & Babuska (1991), which are particularly suitable
for the implementation of increasing interpolations orders – the so-called p-extension.
Given a finite element mesh, a discretization is specified by its interpolation order
for the velocity. In the following, we mark a discretization using PO followed by
its (highest) velocity interpolation order such as PO2, PO3 etc. The finite element
discretization from equations (4.5) and (4.6) produces a set of nonlinear equations for
the velocity and pressure variables; previous investigators dealing with the bi-viscosity
model employed the Picard iteration to solve these equations, while here we prefer
using the Newton iteration. For both the bi-viscosity and the Papanastasiou models,
we found that the most efficient way to reach a required solution is to keep the yield



72 Y. Fan, N. Phan-Thien and R. I. Tanner

1.0

0.8

0.6

0.4

0.2

0

2.0 2.5 3.0

Y = 0; Newtonian
Y = 1; n =100; Papanastasiou; PO2
Y = 1; n =1000; Papanastasiou; PO2
Y = 1; m =100; Bi-viscosity; PO2
Y = 1; n =1000; Papanastasiou; PO3

Slope =. –0.35

(a)

Vu

x

1.0

0.8

0.6

0.4

0.2

0

5 6 7

(b)

x
8

Figure 4. Velocity profiles of Vϕ on the symmetry line for configuration 1 with the outer cylinder
rotating: (a) small gap; (b) large gap.

stress Y as a chosen constant and gradually increase the parameter n or m of the
model from a low value, say 1, to a designated value, say 1000. However, because
the bi-viscosity function is discontinuous in its derivative, its radius of convergence
is relatively very small, making the m-augmentation algorithm rather CPU time-
consuming; by contrast, the Papanastasiou model, endowed with a smooth viscosity
function, permits much larger steps in the n-augmentation algorithm.

5. Solutions of the steady flows
One of the major concerns in our study is the accuracy of numerical simulations

because the discretization errors in the steady velocity field may be magnified ex-
ponentially in the computations for chaotic mixing (Souvaliotis et al. 1995). In the
earlier work, Fan et al. (2000), we have demonstrated that, for the Newtonian creeping
flow, in terms of the maximum and the root-mean-square errors with respect to the
analytical solution of Wannier (1950), our p-extension computation converges and the
convergence rate in terms of the number of variables solved is roughly exponential;
for example, when using the discretization PO4, magnitudes of the maximum and the
root-mean-square errors reduced to 10−10 and 10−11, respectively.

Solution accuracy of our computation for the viscoplastic models can be assessed by
examining the second invariant of the extra stress tensor, τ, which requires calculations
of velocity gradients. In figure 3, contours of τ with the yield stress Y = 1 are plotted.
According to our criterion, the unshaded regions with τ 6 1 represent unyielded
zones in the flow. The bi-viscosity and Papanastasiou models predict qualitatively the
same unyielded zones. Changing the discretization from PO2 to PO3 does not change
the flow pattern significantly, except that with the higher interpolations a smoother
boundary of the unyielded zones is obtained. The variations of the minimum τ and
maximum τ in these calculations seem to be insignificant. The flow characteristics can
be further clarified by plotting the tangential velocity Vϕ along the line connecting
the centres of the cylinders as shown in figure 4. Due to the flow symmetry, the
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Figure 5. Contours of the second invariant of the extra stress τ in configuration 1;
the unyielded regions are not shaded.



74 Y. Fan, N. Phan-Thien and R. I. Tanner

1.0

0.8

0.6

0.4

0.2

0

2 2.5 3

Y = 1
Y = 10
Y = 0.1
Ωo

Outer cylinder rotation; small gap

Vu

0

–0.2

–0.4

–0.6

–0.8

–1.0
2 2.5 3

Y = 1
Y = 0.1
Y = 10

Inner cylinder rotation; small gap

Vu

x

0

–0.2

–0.4

–0.6

–0.8

–1.0
5 6 7

Y = 1
Y = 0.1
Y = 10

Inner cylinder rotation; large gap

x
8

1.0

0.8

0.6

0.4

0.2

0

5 6 7

Y = 1
Y = 10
Y = 0.1
Ωo

Outer cylinder rotation; large gap

8

Figure 6. Velocity profiles of Vϕ on the symmetry line in configuration 1; the thick straight line
represents the velocity gradient corresponding to rigid rotation with Ωo

radial velocity Vξ is zero on this symmetry line. Examining figure 4, one can identify
the unyielded region in the large gap of figure 3 with a dead zone; in the small
gap, there is a section of a linear velocity Vϕ with a slope approximately equal to
−0.35; since Vξ = 0, this indicates a rigid plug rotating with the angular velocity of
0.35; note that in this case the outer cylinder is rotating with the angular velocity
Ωo = Vo/Ro = 1/3 = 0.33. Figure 4 also shows that the velocity profiles of the
bi-viscosity model with PO2 and the Papanastasiou model with PO2 and PO3 cannot
be distinguished visually. Furthermore, the differences in the results on changing the
parameter n from 1000 to 100 are negligible.

Backed by these results, in the following we concentrate on the solutions of the
Papanastasiou model with n = 1000 and the discretization PO2. Let us first consider
configuration 1. Figure 5 exhibits the contours of the second invariant of the stress,
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Figure 7. Contours of the second invariant of the extra stress τ in configuration 2;
the unyielded region is represented by the unshaded area.

τ, spanning from a weak yield stress, Y = 0.1, to a strong yield stress, Y = 10.
The unyielded regions, represented by the unshaded areas, become enlarged as the
corresponding yield stress increases. The character of these unyielded regions can be
explained by figure 6 which, like figure 4, plots the velocity Vϕ on the symmetry line. In
the case of rotating outer cylinder, the range of the linear velocity profile in the small
gap becomes larger and its slope steeper with higher yield stresses, indicating that more
material nearby is involved in a plug-like rotation with higher angular velocities. In the
large gap, a section of plug rotation stuck to the outer cylinder wall can be detected
for Y = 10, and large dead zones stuck to the inner cylinder wall are found for Y = 1
and Y = 10. The flow patterns for the case of rotating inner cylinder are relatively
simple: as the yield stress increases, the yielded region gradually shrinks to a thin layer
surrounding the inner cylinder, leaving more of the outside region as motionless zone.
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Figure 8. Velocity profiles of Vϕ on the symmetry line in configuration 2; the thick straight line
represents the velocity gradient corresponding to rigid rotation with Ωo.

Configuration 2, with a relatively smaller gap and larger eccentricity, is expected
to be able to reduce the unyielded regions observed in configuration 1, and this is
confirmed by figure 7 and figure 8. For the case of rotating outer cylinder, a dead zone
attached to the inner cylinder in the large gap and a plug stuck to the outer cylinder
in the small gap are found for the fluid with Y = 10; a small plug in the small gap
and a weakly rotating plug in the large gap are found for the fluid with Y = 1. It
is interesting to notice that the plug in the large gap is counter-rotating with respect
to the rotation of the outer cylinder. For the case of rotating inner cylinder, more
and more unyielded material in the large gap sticks to the outer cylinder wall as the
yield stress increases; in the small gap, the shape of the velocity profile changes from
concave for Y = 0.1 and Y = 1 to a slightly convex for Y = 10; however, there seems
little chance for the fluid to undergo a plug flow there, as can be judged by the stress
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Figure 9. Velocity profiles of Vϕ on six consecutive azimuthal lines (ξ-constant lines) passing
through the counter-rotating plug in the large gap in configuration 2. Outer cylinder rotation;
Y = 1.0.

contours in figure 7. Figure 9 provides further evidence of the counter-rotating plug
in the large gap: six consecutive azimuthal lines (ξ-constant lines) are chosen to pass
through the plug region and the profiles of the velocity Vϕ along these lines clearly
demonstrate that near the symmetry line in the large gap, ϕ = π, Vϕ is negative.

Finally, we show the contours of the pressure for some cases in figure 10. All the
pressure contours are symmetric with respect to the geometrical symmetry line. The
contours of the Newtonian fluid are smooth, while those of the viscoplastic fluids
show some apparent wiggles along the boundaries between the yielded and unyielded
regions, reflecting drastic changes of the constitutive relation there.

6. Methods of computing advective mixing
In the piecewise-steady approximation, the unsteady, periodic flow is composed of

two alternating steady flows corresponding to the rotation of each cylinder; the time
dependence of the velocity field is periodic and discontinuous since only one cylinder
is rotating at a time. One basic procedure in the computation of advective mixing
is to calculate the trajectory or pathline of a fluid particle through integrating the
equation of motion,

dx

dt
= u(x, t), with xt=0 = X , (6.1)

where X is the initial position of a particle, x = x(X , t) the position at the time t,
and u(x, t) is the unsteady velocity field. Experiments on or numerical simulation of
a passive tracer can provide qualitative, intuitive pictures of the mixing morphology
such as the folds and striations, the regular and chaotic regions in the flow field. On the
other hand, advective mixing stretches the fluid elements, enlarges the contact surfaces
between different fluids and enables them to diffuse efficiently in smaller scales. In
the present study, the amount of lineal stretching is used to quantitatively assess the
performance of the mixing. To determine the lineal stretching let us follow a fluid
element attached to an infinitesimal material vector dx(t), which can be computed if
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Figure 10. Contours of the pressure; configurations 1 (top four) and 2 (bottom 2).

we know the deformation gradient tensor, F , defined as

dx(t) = F (t) · dX , (6.2)

where dX is the initial vector with an arbitrary orientation. This requires solving the
evolution equation of the deformation gradient tensor:

dF

dt
= (∇u(x, t))T · F , with Ft=0 = I , (6.3)

where I is the identity tensor. Since the material vector is convected by the flow, the
gradient of the velocity is time dependent even in a steady flow; therefore the equation
of material position (6.1) and the equation of the deformation gradient tensor (6.3)
must be solved simultaneously to obtain x and F , as functions of the initial position
and orientation of the material vector. The lineal stretching is defined as

λ =
|dx|
|dX | . (6.4)
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θ = 4π

Figure 11. Asymptotic coverages of a passive tracer initially positioned in the middle of the small
gap; after 36 rotations of the inner cylinder; configuration 1.

Note that the stretching λ depends on F as well as on the orientation of the
initial vector dX . In addition, if dX = dXp, where p is randomly distributed, then
λ = 1

3
tr FTF .

The details of our numerical implementation for the advection of passive tracers
and for the lineal stretching can be found in Fan et al. (2000). Generally, due to
the co-existence of regular and chaotic regions, the distribution of the stretching
is highly non-uniform throughout the flow domain after several periods. Since the
initial locations of 4800 tracked particles are uniform in the finite element meshes,
it is convenient for us to present the distribution of stretching by plotting contours
of the logarithm of λ according to their initial locations. It was observed that the
final locations of these particles are roughly uniform. As a global assessment of the
stretching we take the geometric mean over all the values of stretching tracked and
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Figure 12. Contours of the logarithm of the lineal stretching of 4800 fluid particles initially uni-
formly distributed in the flow domain of configuration 1; after 36 rotations of the inner cylinder.

define the mean stretching, 〈λ〉, as

ln〈λ〉 =
1

N

N∑
1

ln λi, (6.5)

where N is the number of particles tracked and λi is the stretching of particle i. If
a flow domain is dominated by chaotic mixing, the mean stretching is expected to
increase exponentially with time.

7. Results of the mixing computation
7.1. Configuration 1

Figure 11 plots the asymptotic coverages of a passive tracer initially located in the
middle of the small gap, after 16 periods for the rotation mode of θ = 3π/2, 12
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Figure 13. Variations of the logarithm of mean stretching with time in configuration 1.

periods for θ = 2π and 6 periods for θ = 4π, respectively. The unshaded areas are the
regular regions into which the tracer cannot penetrate while in the chaotic regions
(black) one can detect folds and striations of the mixed tracer. For Y = 0.1 and
θ = 2π the crescent-shaped island in the large gap is the same as in the experiment
for Newtonian fluids reported by Swanson & Ottino (1990).

Figure 12 shows the corresponding contours of the logarithm of the lineal stretching
λ. Careful comparisons show that the regions of lowest stretching are well matched in
an antisymmetric way to the regular regions in figure 11, even for some tiny islands.
Swanson & Ottino (1990) also found a similar phenomenon for the Newtonian fluid
and they suggested that the manifold structure associated with the low-order periodic
points may be responsible for the agreement between the stretching distribution and
the coverage of a passive tracer.

Figure 13 shows the logarithm of the mean stretching 〈λ〉 versus the rotation number
of the inner cylinder, including the rotation modes of θ = 3π/2, θ = 2π, θ = 3π and
θ = 4π. It is evident that, except for the case of Y = 10, the mean stretching increases
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Y = 0.1 Y =1

θ = 3π
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Figure 14. Asymptotic coverages of a passive tracer initially positioned in the middle of the small
gap; after 36 rotations of the inner cylinder; configuration 2.

exponentially with time (equivalent to the rotation number of the inner cylinder). For
Y = 0 (Newtonian) and Y = 0.1, the rotation mode of θ = 4π has the highest mean
stretching. For Y = 1.0, the rotation mode of θ = 2π seems to be an optimal choice
in view of figures 11, 12 and 13. As expected, the mixing of the fluid with the high
yield stress Y = 10 is rather poor because it is dominated by large unyielded regions.

7.2. Configuration 2

To compare the mixing characteristics of configuration 1 (Ri = 1, Ro = 3) with
those of configuration 2 (Ri = 1, Ro = 1.5), here we present results for equal total
linear displacement per period; thus the rotation mode of θ = 3π in configuration 2
corresponds to θ = 3π/2 in configuration 1, and θ = 4π in configuration 2 corresponds
to θ = 2π in configuration 1, etc. Figures 14, 15 and 16 show the coverages of a
passive tracer, the distributions of stretching in the flow domain and the variations
of the mean stretching with time.
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Figure 15. Contours of the logarithm of the lineal stretching of 4800 fluid particles initially uni-
formly distributed in the flow domain of configuration 2; after 36 rotations of the inner cylinder.

In figure 14, the tracer coverage in the case of Y = 1 and θ = 3π seems exceptionally
light. A detailed examination reveals that, in this particular case, the tracer initially
fell into a regular region in the middle of the small gap; as a result, it was trapped
and not able to spread onto the major region of the flow until the sixth period; this
corresponds to the presence of a narrow strip of low stretching in the middle of the
small gap as shown in figure 15. Except for this accident, the agreement between the
lowest-stretching regions in figure 15 and the regular regions with no tracer coverage
in figure 14 is excellent. Note that the distribution of stretching is naturally consistent
with the amount of mean stretching; this can be confirmed by comparing figure 15
with figure 16, and figure 12 with figure 13. Therefore plotting the distribution of
stretching is a more reliable tool than plotting the coverage of a passive tracer for
quantitatively assessing the advective mixing.

Through examining figure 16, it is concluded that, from Y = 0 to Y = 10, the
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Figure 16. Variations of the logarithm of the mean stretching with time in configuration 2.

rotation mode of θ = 4π always has a relatively good performance while the choice
of θ = 8π should be avoided. Worth noticing is that configuration 2 can provide an
exponential growth of the mean stretching even for fluid with the high yield stress,
Y = 10; in this respect it is obviously superior to configuration 1. Figure 17 compares
the stretching distributions for Y = 10 in configuration 1 with those in configuration
2; as expected, the bulk unyielded materials in configuration 1 present a major barrier
to effective mixing.

8. Mixing efficiency
Finally, we want to address the issue of engineering interest: mixing efficiency.

We discuss the efficiency in terms of the mean lineal stretching as proposed by
Ottino (1989):

eλ =
d ln〈λ〉

dt

1√〈D :D〉 (8.1)
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Figure 17. Comparison of the stretching distributions in (a) configuration 1 and
(b) configuration 2; the yield stress Y = 10; after 36 rotations of the inner cylinder.

where D = (∇u + (∇u)T )/2. This definition of efficiency has the advantage of being

dimensionless and bounded (< 1.0), and in which
√〈D :D〉 is related to the energy

dissipation for purely viscous fluids. In the present problem if only yielded flow regions
are considered, the rate of work consumption per unit volume is (in dimensionless
form, and note γ̇ = 2D)

τ :D =

(
1 +

Y√
2(D :D)

)
2(D :D). (8.2)
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Figure 18. Variation of the mixing efficiency eλ with the operation time; configuration 1.

A mean value of the rate of work consumption per unit volume can be calculated as

〈τ :D〉 = (TiΩi + ToΩo)/2π(R2
o − R2

i ) (8.3)

where T is the torque exerted on the cylinder wall, Ω is the angular velocity, the
subscripts i, o stand for inner and outer cylinders, respectively. The corresponding
mean value of

√
D :D is then obtained by solving equation (8.2); the differential in

(8.1) is approximated by differencing the values at the end of consecutive periods.
Figures 18 and 19 show the mixing efficiencies, calculated in this way, versus the
operation time for configurations 1 and 2, respectively. A common characteristic is
that, up to Y = 1.0, the level of yield stress, as well as the rotation mode, has
little effect on the mixing efficiency. At the high level of yield stress, Y = 10, the
mixing efficiency generally is lower, especially for the rotation modes of large θ. Quite
unexpectedly, the mixing efficiencies in configuration 2 are considerably lower than in
configuration 1; this is attributed to the larger work consumption and much smaller
area of the flow domain of configuration 2, and also to the fact that this efficiency
calculation does not take into account the unyielded zones. Worth noting here is that,
with configuration 2, the mixing efficiencies behave more levelly with time and the
stretching distributions are more uniform than with configuration 1, see figures 12–19.
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Figure 19. Variation of the mixing efficiency eλ with the operation time; configuration 2.

9. Conclusions
The bi-viscosity model and Papanastasiou model smooth the yield criterion of ideal

Bingham plastics, which facilitates the implementation of ordinary finite element
methods in analysing complex flows of viscoplastic fluids. Instead of the yield surface,
these two models predict a sharp transition from low to high viscosity. In the present
flow between eccentric cylinders, the two models quantitatively agree with each
other in terms of the velocity field and the practically unyielded region. Accuracy
and convergence of the solutions have been demonstrated through increasing the
interpolation order (the p-extension) and comparing with the exact solutions for the
reduced case of Newtonian flows. Unlike the bi-viscosity model, the Papanastasiou
model is endowed with a continuous-derivatives viscosity; consequently, it has a much
larger convergence radius than the bi-viscosity model in the algorithm with Newton
iteration. Therefore the computation using the Papanastasiou model is more robust
and economic than that using the bi-viscosity model.

Our numerical simulations of the steady flows in two geometrical configurations
show that the extent of the unyielded zones enlarges when the yield stress increases. In
addition to the unyielded fluid at rest, some plugs with rigid rotation in the flows have
been discovered, including rotating plugs stuck onto the outer cylinder and rotating,
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even counter-rotating, plugs disconnected from both cylinders. These unyielded zones
have been identified by the yield criterion of the model as well as by close examination
of the velocity profiles there. As far as we are aware, these phenomena have not been
previously reported in the literature; we expect further examination or confirmation
from experiments.

The unsteady, periodic flow of viscoplastic fluids between eccentric cylinders was
simulated by using the piecewise-steady approximation. The mixing characteristics of
these flows have been studied by analysing the asymptotic coverage of a passive tracer,
the final distribution of lineal stretching in the flow domain and the variation of the
mean stretching with the operation time. The tracer-coverage plotting is intuitive but
qualitative and, occasionally, it depends on the initial location of the tracer; on the
other hand, the distribution of stretching is quantitative and more reliable in reflecting
the mixing characteristics. It is interesting that the zones with the lowest stretching
in the distribution graphs are remarkably well matched with the regular zones in
the tracer-coverage graphs. The present numerical investigation has demonstrated
that the time-periodic flows in the eccentric annuli do produce chaotic mixing for
the viscoplastic fluids, except for the high yield stress, Y = 10, in configuration 1.
The mixing characteristics and mixing efficiency of various rotation modes in two
geometrical configurations have been examined in the hope of finding some general
rules. It is important to realize that, for plastic fluids, a major barrier to effective
mixing is the unyielded plugs in the flow, which are controlled by the yield stress and
the geometrical configuration, not by the rotation mode; therefore it is expected that
the geometrical configuration has a much greater impact on the characteristics and
efficiency of the advective mixing than has the rotation mode.
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(ARC). Y. R. Fan also acknowledges the support of the National Natural Science
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